

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.453

Volume 13, Issue 13, 904-923.

Research Article

ISSN 2277-7105

DESIGN, SYNTHESIS, MOLECULAR DOCKING STUDIES OF NOVEL ISATIN DERIVATIVES AND IN VITRO ANTICANCER ACTIVITY AGAINST EGFR RECEPTOR

Sinduja Perumalla*1 and Dr. Ashok Dongamanti2

¹Department of Pharmaceutical Sciences, University College of Technology, Osmania University, Hyderabad, 500007, Telangana State, India.

²Department of Chemistry, Osmania University Hyderabad, 500007, Telangana State, India.

Article Received on 10 May 2024,

Revised on 01 June 2024, Accepted on 22 June 2024

DOI: 10.20959/wjpr202413-33009

*Corresponding Author Sinduja Perumalla

Department of
Pharmaceutical Sciences,
University College of
Technology, Osmania
University, Hyderabad,
500007, Telangana State,
India.

ABSTRACT

The present work deals with the sequence of 5-substituted-3-[2-(phenyl) hydrazinylidene]-1-[(1,2,4-triazol-4-yl) acetyl]-indol-2-one [(Scheme-I-4(a-o)] was synthesized by conventional method, and were screened as potential anticancer activity and molecular docking studies. All of the newly synthesized compounds structurally characterized on the basis of IR, ¹HNMR and Mass spectral analysis. Further, were screened for anticancer activity against MCF-7 cell lines by MTT assay method. The results showed that some of the compounds 4f and 4h exhibited good anticancer activity by comparing standard drug. Additionally, the molecular docking studies of (3Z)-5substituted-3-[2-(4-methoxyphenyl)hydrazinylidene]-1-[(4H-1,2,4acetyl]-1,3-dihydro-2H-indol-2-one derivatives carried out to explain putative bonding interaction between the active site of EGFR enzyme and potent inhibitors by using AUTODOCK VINA with PDB ID: 1M17. All the docked ligands, reported lowest binding energy between -11.7 to -8.4 Kcal/mol. Compounds 4b & 4h

possess excellent bonding score were comparison with other synthesized derivatives.

KEYWORDS: Indole-1,2-dione, Triazol, Phenyl hydrazine, Anticancer Activities, MCF7 Doxorubicin, EGFR and AUTODOCK VINA.

1. INTRADUCTION

Cancer is a major health burden worldwide and it is deemed to be the second leading cause of mankind mortality after cardiovascular diseases. Most of the clinically available anticancer chemotherapeutic agents are not able to discriminate between cancer cells and the rapidly dividing healthy cells.^[1] Moreover, the growing increase in drug resistance and undesired side effects of the clinically available cancer chemotherapeutic agents aroused the necessity to search for newer more potent and safer cancer chemotherapeutic candidates.^[2]

A heterocyclic compound is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Isatin or Indole-2,3-dione is an aromatic heterocyclic compound with the chemical formula C₈H₅NO₂. 1H-Indole-2, 3-dione belongs to the class of organic compounds known as indolines.

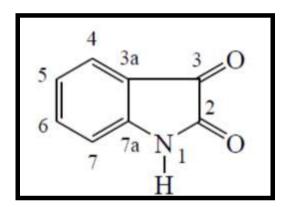


Figure 1: Example for Isatin.

These are compounds containing an indole moiety, which consists of pyrrolidine ring fused to benzene to form 2, 3-dihydroindole. Comprehensive literature survey carried out on Schiff bases are used as substrates in the preparation of a number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions. Moreover, Schiff bases derived from various heterocycles have been reported to possess cytotoxic, antimicrobial, antiproliferative, anticancer, anticonvulsant and antifungal activities.^[3-5]

The practice of medicinal chemistry is devoted to the discovery and development of new agents for treating diseases. The process of establishing new drugs is exceedingly complex and involves the talents of people from a variety disciplines, including Chemistry, Biochemistry, Physiology, Pharmacology, Pharmaceutics and Medicine.^[3-4] Many Indole derivatives find important applications in the field of agriculture, medicine and industry. Indole ring are parts of the larger family of sulphur and nitrogen containing organic

compounds and metal their complexes which display a broad range of biological activity, finding applications ant-tumor, antibacterial, antifungal and antiviral agents. [6-10] Indole is also known as benzopyrrole which contains benzenoid nucleus and has 10π -electrons (two from lone pair on nitrogen and double bonds provide eight electrons) which makes them aromatic in natur. [10-14] Similar to the benzene ring, electrophilic substitution occurs readily on indole due to excessive π -electrons delocalization.

Molecular docking is generally used to detect the protein-ligand orientation and interaction. The quality of any docking results depends on the starting structure of both the protein and the potential ligand. The protein and ligand structure need to be prepared to achieve the best docking results. It includes the following steps, 1. Preparation of receptor & ligand files. 2. Calculation of affinity maps by using a 3D grid around the receptor & ligand. 3. Defining the docking parameters and running the docking simulation. [18-20]

2. EXPERIMENTAL SECTION

2.1. Materials and Methods

The present work is based on Schiff's base and N-acetylation reactions. All the chemicals were used in this research work were obtained from A.R grade and procured from the Merck and LOBA chemicals. The synthesized compounds melting points were determined by Thieles tube method by using liquid paraffin as a solvent. IR spectra were recorded by Thermo Nicolet Nexus 670 FTIR spectrometer and ¹HNMR were recorded on Bruker DPX-200 Hz using DMSO-d6 and chemical shifts (δ ppm) are recorded in parts per million downfield from internal reference Tetramethylsilane (TMS). Mass spectra had been recorded by the use of Schimadzu LCMS-8030 mass spectrophotometer and all the spectra had been interpreted. The recoated Silica Gel G plates were used to found the progress of reaction as well as to assessment the purity of the compounds: n-Hexane: Ethyl acetate (7:3). The molecular docking studies were carried out by using AUTODOCK suite of MGL Tools Software.

2.2. General synthetic procedure

Step-I: Synthesis of 5-substituted-1-(chloroacetyl)-indole-2,3-dione 2(a-f): To a solution of substituted isatin (0.016mol) in (30ml) glacial acetic acid, chloroacetyl chloride (3.7g, 0.032mol) was added drop wise with constant stirring. The reaction mixture was refluxed for 3-5 hrs then it was powered onto crushed ice. The precipitated solid that obtained was filtered off, washed with cold water, dried and recrystallized from aqueous ethanol.^[21]

Step-II: Synthesis of 5-substituted-1-[(1,2,4-triazol-4-yl) acetyl]-indole-2,3-dione 3(a-f). To a solution of 5-substituted-1-(chloroacetyl)-indole-2,3-dione 2(a-f) (0.016mol) in (30ml) glacial acetic acid, triazole (0.032mol) was added drop wise with constant stirring. The reaction mixture was refluxed for 3-5 hrs then it was powered onto crushed ice. The precipitated solid that obtained was filtered off, washed with cold water, dried and recrystallized from aqueous ethanol. [22]

Step-III: Synthesis 5-substituted-3-[2-(4-substituted-phenyl) hydrazinylidene]-1-[(1,2,4-triazol-4-vl)acetyl]-indol-2-one.4(a-o)

The 5-substituted-1-[(1,2,4-triazol-4-yl) acetyl]-indole-2,3-dione 3(a-f) (0.01 mol) compound was taken in a mixture of 4-substituted phenyl hydrazine (0.01 mol) and glacial acetic acid (5 mL) and Ethanol 30ml, then the reaction mixture was refluxing for 2-3hrs. The progress of the reaction was monitored by TLC (Hexane: EtoAc 7:3). The reaction mixture was cooled to room temperature. A solid was obtained, which was filtered off and washed with hexane and recrystallized from methanol to give crystalline solid.^[23]

Compound.4a:3-(2-phenylhydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl]-indol-2-one. IR cm⁻¹ (KBr): 3420(-NH Str in hydrazinylidene), 3093(-CH Str in Aromatic ring), 2986, 2876(-CH str in aliphatic group), 1710, (-C=O Str in Indole), 1698(-C=O Str in acetyl group), 1568(-C=N Str), 1503(-C=C Str), 1412(-C-N Str), 1358(-C=S Str). ¹HNMR (DMSO, δppm): 9.876(s, 1H, -NH proton), 8.198-8.102(d, 2H, Ar-H), 7.985-7.904(d, 2H, Ar-H), 7.786-7.743(t, 2H, Ar-H), 7.302-7.298(t, 2H, Ar-H), 7.289(s, 1H, triazole), 7.196(s, 1H, triazole ring), 4.345(s, 2H, acetyl protons). Mass (LC-MS):m/z 346.2(M+), 347.3(M+1, 100%).

Compound.4b: 5-nitro-3-(2-phenylhydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl-indol-2-one. IR cm⁻¹ (KBr): 3409(-NH Str in hydrazinylidene), 3054(-CH Str in Aromatic ring), 2945, 2829(-CH str in aliphatic group), 1721 (-C=O Str in Indole), 1702(-C=O Str in acetyl group), 1634(-NO₂ Str in Ar-NO₂), 1556(-C=N Str), 1512(-C=C Str), 1426(-C-N Str), 1329(-C=S Str). ¹HNMR (DMSO, δppm): 9.665(s, 1H, -NH proton), 8.30(s, 1H, Ar-H), 8.0765-8.002(d, 2H, Ar-H), 7.986-7.897(d, 2H, Ar-H), 7.685-7.601(t, 3H, Ar-H), 7.453(s, 1H, triazole), 7.302(s, 1H, triazole ring), 4.281(s, 2H, acetyl protons). Mass (LC-MS):m/z 391.1(M+), 392.5(M+1, 100%).

Compound.4c: 5-methyl-3-(2-phenylhydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl]indol-2-one. IR cm⁻¹ (KBr): 3419(-NH Str in hydrazinylidene), 3083(-CH Str in Aromatic ring), 2956, 2878(-CH str in aliphatic group), 1718(-C=O Str in Indole), 1696(-C=O Str in acetyl group), 1592(-C=N Str), 1530(-C=C Str), 1431(-C-N Str), 1326(-C=S Str). ¹HNMR (DMSO, δppm): 9.785(s, 1H, -NH proton), 8.298(s, 1H, Ar-H), 8.1093-8.1002(d, 2H, Ar-H), 7.895-7.812(d, 2H, Ar-H), 7.632-7.600(t, 2H, Ar-H), 7.502(s, 1H, triazole), 7.402(s, 1H, triazole ring), 4.211(s, 2H, acetyl protons), 2.092(s, 3H, Ar-CH₃). Mass (LC-MS):m/z 360.13(M+), 361.03(M+1, 100%).

Figure 2: **Schematic** representation of 5-substituted-3-[2-(4-methoxyphenyl) hydrazinylidene]-1-[(1,2,4-triazol-4-yl)acetyl]-indol-2-one.4(a-o).

Compound.4d: 5-chloro-3-(2-phenylhydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl]-indol-2-one: IR cm⁻¹ (KBr): 3398(-NH Str in hydrazinylidene), 3104(-CH Str in Aromatic ring), 2976, 2887(-CH str in aliphatic group), 1723(-C=O Str in Indole), 1705(-C=O Str in acetyl group), 1589(-C=N Str), 1523(-C=C Str), 1441(-C-N Str), 1329(-C=S Str), 809(-Cl Str in Ar-¹HNMR (DMSO, δppm): 9.832(s, 1H, -NH proton), 8.302(s, 1H, Ar-H), 8.2148.209(d, 2H, Ar-H), 8.102-8.098(d, 2H, Ar-H), 7.984-7.932(t, 2H, Ar-H), 7.632(s, 1H, triazole), 7.584(s, 1H, triazole ring), 4.380(s, 2H, acetyl protons). **Mass (LC-MS):**m/z 380.08(M+), 381.021(M+1, 100%), 382.12(M+2, 30%).

Table No. 1: Physical data of 5-substituted-3-[2-(4-methoxyphenyl) hydrazinylidene]-1-[(1,2,4-triazol-4-yl)acetyl]-indol-2-one.4(a-o).

Compound	R	\mathbf{R}_{1}	Molecular Formula	Molecular Weight(gm)	M.P (⁰ C)	%yield
I-4a	-H	-H	$C_{18} H_{14} N_6 O_2$	346.2	186-188	83
I-4b	$-NO_2$	-H	$C_{18} H_{13} N_7 O_4$	391.10	171-173	79
I-4c	-CH ₃	-H	$C_{19} H_{16} N_6 O_2$	360.13	213-215	81
I-4d	-Cl	-H	$C_{18}H_{13}CIN_6O_2$	380.08	237-239	85
I-4e	-CH ₃	-CH ₃	$C_{20} H_{18} N_6 O_2$	374.15	210-212	76
I-4f	-F	-H	$C_{18} H_{13} FN_6 O_2$	364.11	219-221	85
I-4g	-Cl	-CH ₃	$C_{19} H_{15} ClN_6 O_2$	394.09	159-161	80
I-4h	-NO ₂	CH ₃	$C_{19} H_{15} N_7 O_4$	405.12	151-153	79
I-4i	-F	CH ₃	$C_{19} H_{15} FN_6 O_2$	378.12	209-211	75
I-4j	-H	-OCH ₃	$C_{19} H_{16} N_6 O_3$	376.13	183-186	87
I-4k	-Cl	-OCH ₃	$C_{19} H_{15} ClN_6 O_3$	410.09	167-169	78
I-4l	-CH ₃	-OCH ₃	$C_{20} H_{18} N_6 O_3$	390.14	225-227	84
I-4m	-Br	-H	$C_{18} H_{13} Br N_6 O_2$	424.03	189-191	77
I-4n	-Br	-CH ₃	C ₁₉ H ₁₅ BrN ₆ O ₂	438.04	217-219	83
I-41	-Br	-OCH ₃	$C_{20} H_{15} N_6 O_3$	374.15	203-205	85

Compound.4e: 5-methyl-3-(2-(4-methylphenyl) hydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl]-indol-2-one. IR cm⁻¹ (KBr): 3387(-NH Str in hydrazinylidene), 3048(-CH Str in Aromatic ring), 2987, 2838(-CH str in aliphatic group), 1726(-C=O Str in Indole), 1710(-C=O Str in acetyl group), 1567(-C=N Str), 1534(-C=C Str), 1448(-C-N Str), 1338(-C=S Str), 689(-F Str in Ar-F). ¹HNMR (DMSO, δppm): 9.976(s, 1H, -NH proton), 8.204(s, 1H, Ar-H), 8.125-8.200(d, 2H, Ar-H), 7.989(d, 2H, Ar-H), 7.832-7.812(t, 2H, Ar-H), 7.765(s, 1H, triazole), 7.723(s, 1H, triazole ring), 4.187(s, 2H, acetyl protons), 2.034(s,3H, Ar-CH₃), 1.986(s, 3H, Ar-CH₃). Mass (LC-MS):m/z 374.15(M+), 375.43(M+1, 100%).

Compound.4f: 5-fluoro-3-(2-phenylhydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl]-indol-2-one. IR cm⁻¹ (KBr): 3410(-NH Str in hydrazinylidene), 3096(-CH Str in Aromatic ring), 2956, 2885, 2796(-CH str in aliphatic group), 1719(-C=O Str in Indole), 1701(-C=O Str in acetyl group), 1593(-C=N Str), 1534(-C=C Str), 1452(-C-N Str), 1341(-C=S Str). ¹HNMR (DMSO, δppm): 9.976(s, 1H, -NH proton), 8.204(s, 1H, Ar-H), 8.125-8.200(d, 2H, Ar-H), 7.989(d, 2H, Ar-H), 7.832-7.812(t, 2H, Ar-H), 7.765(s, 1H, triazole), 7.723(s, 1H, triazole ring), 4.532(s, 2H, acetyl protons). Mass (LC-MS):m/z 374.15(M+), 375.43(M+1, 100%).

S-chloro-3-(2-(4-methylphenyl)hydrazinylidene)-1-[(-1,2,4-triazol-4-yl)acetyl]-indol-2-one. IR cm⁻¹ (**KBr**): 3420(-NH Str in hydrazinylidene), 3104(-CH Str in Aromatic ring), 2967, 2887, 2736(-CH str in aliphatic group), 1726(-C=O Str in Indole), 1700(-C=O Str in acetyl group), 1556(-C=N Str), 1527(-C=C Str), 1446(-C-N Str), 1336(-C=S Str), 789(-Cl Str in Ar-Cl). **HNMR (DMSO, δppm):** 9.786(s, 1H, -NH proton), 8.3097(s, 1H, Ar-H), 8.187-8.126(d, 2H, Ar-H), 7.7865-7.732(d, 2H, Ar-H), 7.687(s, 1H, triazole), 7.756(s, 1H, triazole ring), 4.621(s, 2H, acetyl protons), 2.064(s, 3H, Ar-CH₃). **Mass (LC-MS):**m/z 394.09(M+), 395.3(M+1, 100%), 396.12(M+2, 30%).

Figure 2: 5-substituted-3-[2-(4-substitutedphenyl) hydrazinylidene]-1-[(1,2,4-triazol-4-yl) acetyl]-indol-2-one.4(a-o).

Compound.4h: 5-nitro-3-(2-(4-methylphenyl) hydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl]-indol-2-one. IR cm⁻¹ (KBr): 3448(-NH Str in hydrazinylidene), 3096(-CH Str in Aromatic ring), 2976, 2834, 2784(-CH str in aliphatic group), 1712(-C=O Str in Indole), 1697(-C=O Str in acetyl group), 1643(-NO₂ Str in Ar-NO₂), 1551(-C=N Str), 1519(-C=C Str), 1454(-C-N Str), 1329(-C=S Str). ¹HNMR (DMSO, δppm): 9.934(s, 1H, -NH proton), 8.209(s, 1H, Ar-H), 8.095-8.003(d, 2H, Ar-H), 7.984-7.923(d, 2H, Ar-H), 7.765-7.702(d, 2H, Ar-H), 7.687(s, 1H, triazole), 7.498(s, 1H, triazole ring), 4.203(s, 2H, -acetyl), 1.987(s, 3H, Ar-CH₃). Mass (LC-MS):m/z 405.12(M+), 406.32(M+1, 100%).

Compound.4i: 5-fluoro-3-(2-(4-methylphenyl) hydrazinylidene)-1-[(1,2,4-triazol-4-yl) acetyl]-indol-2-one. IR cm⁻¹ (KBr): 3432(-NH Str in hydrazinylidene), 3103(-CH Str in Aromatic ring), 2967, 2854, 2778(-CH str in aliphatic group), 1727(-C=O Str in Indole), 1707(-C=O Str in acetyl group), 1587(-C=N Str), 1528(-C=C Str), 1453(-C-N Str), 1324(-C=S Str), 678(-F Str in Ar-F). ¹HNMR (DMSO, δppm): 9.896(s, 1H, -NH proton), 8.3043(s, 1H, Ar-H), 8.213-8.210(d, 2H, Ar-H), 7.897-7.832(d, 2H, Ar-H), 7.785-7.723(d, 2H, Ar-H), 7.453(s, 1H, triazole), 7.402(s, 1H, triazole ring), 4.532(s, 2H, acetyl protons)., 1.983(s, 3H, Ar-CH₃). Mass (LC-MS):m/z 378.12(M+), 379.32(M+1, 100%).

Compound.4j: 3-(2-(4-methoxyphenyl) hydrazinylidene)-1-[(1,2,4-triazol-4-yl) acetyl]-indol-2-one. IR cm⁻¹ (KBr): 3454(-NH Str in hydrazinylidene), 3067(-CH Str in Aromatic ring), 2967, 2843(-CH str in aliphatic group), 1723(-C=O Str in Indole), 1704(-C=O Str in acetyl group), 1589(-C=N Str), 1524(-C=C Str), 1445(-C-N Str), 1339(-C=S Str). ¹HNMR (DMSO, δppm): 9.674(s, 1H, -NH proton), 8.309(s, 1H, Ar-H), 8.208-8.190(d, 2H, Ar-H), 7.894-7.803(d, 2H, Ar-H), 7.764-7.723(t, 2H, Ar-H), 7.589(s, 1H, triazole), 7.421(s, 1H, triazole ring), 4.423(s, 2H, acetyl protons), 3.564(s, 3H, Ar-OCH₃). Mass (LC-MS):m/z 376.13(M+), 377.32(M+1, 100%).

Compound.4k: 5-chloro-3-(2-(4-methoxyphenyl) hydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl]-indol-2-one. IR cm⁻¹ (KBr): 3389(-NH Str in hydrazinylidene), 3010(-CH Str in Aromatic ring), 2967, 2865(-CH str in aliphatic group), 1734(-C=O Str in Indole), 1708(-C=O Str in acetyl group), 1587(-C=N Str), 1534(-C=C Str), 1487(-C-N Str), 1312(-C=S Str), 798(-Cl Str in Ar-Cl). ¹HNMR (DMSO, δppm): 9.892(s, 1H, -NH proton), 8.124(s, 1H, Ar-H), 8.012-8.002(d, 2H, Ar-H), 7.903-7.900(d, 2H, Ar-H), 7.823-7.821(t, 2H, Ar-H), 7.654(s, 1H, triazole), 7.543(s, 1H, triazole ring), 4.287(s, 2H, acetyl protons), 3.854(s, 3H, Ar-OCH₃). Mass (LC-MS):m/z 410.09(M+), 411.43(M+1, 100%), 412.43(M+2, 100%).

Compound.4l: 5-methyl-3-(2-(4-methoxyphenyl) hydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl]-indol-2-one. IR cm⁻¹ (KBr): 3453(-NH Str in hydrazinylidene), 3023(-CH Str in Aromatic ring), 2978, 2887, 2786(-CH str in aliphatic group), 1726(-C=O Str in Indole), 1703(-C=O Str in acetyl group), 1578(-C=N Str), 1554(-C=C Str), 1423(-C-N Str), 1314(-C=S Str). ¹HNMR (DMSO, δppm): 9.786(s, 1H, -NH proton), 8.294(s, 1H, Ar-H), 8.102-8.033(d, 2H, Ar-H), 7.875-7.698(d, 2H, Ar-H), 7.-598(d, 2H, Ar-H), 7.487(s, 1H, triazole), 7.376(s, 1H, triazole ring), 4.612(s, 2H, acetyl protons), 3.685(s, 3H, Ar-OCH₃), 2.054(s, 3H, Ar-CH₃). Mass (LC-MS):m/z 390.14(M+), 391.48(M+1, 100%).

Compound.4m: 5-bromo-3-(2-phenylhydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl] - indol-2-one. IR cm⁻¹ (KBr): 3476(-NH Str in hydrazinylidene), 3076(-CH Str in Aromatic ring), 2976, 2847, 2754(-CH str in aliphatic group), 1721(-C=O Str in Indole), 1698(-C=O Str in acetyl group), 1568(-C=N Str), 1556(-C=C Str), 1432(-C-N Str), 1403(-Br Str in Ar-Br), 1333(-C=S Str). ¹HNMR (DMSO, δppm): 9.879(s, 1H, -NH proton), 8.402(s, 1H, Ar-H), 8.213-8.204(d, 2H, Ar-H), 8.065-8.001(d, 2H, Ar-H), 7.984-7.8912(t, 3H, Ar-H), 7.686(s, 1H, triazole), 7.486(s, 1H, triazole ring), 4.298(s, 2H, acetyl protons). Mass (LC-MS):m/z 424.03(M+), 425.03(M+1, 100%), 426.21(M+2, 100%).

Compound.4n: 5-bromo-3-(2-(4-methylphenyl) hydrazinylidene)-1-[(1,2,4-triazol-4-yl)acetyl]-indol-2-one. 3485(-NH Str in hydrazinylidene), 3023(-CH Str in Aromatic ring), 2964, 2893, 2745(-CH str in aliphatic group), 1713(-C=O Str in Indole), 1667(-C=O Str in acetyl group), 1549(-C=N Str), 1549(-C=C Str), 1441(-C-N Str), 1410(-Br Str in Ar-Br), 1338(-C=S Str). ¹HNMR (DMSO, δppm): 9.786(s, 1H, -NH proton), 8.320(s, 1H, Ar-H), 8.198-8.103(d, 2H, Ar-H), 7.989-7.902(d, 2H, Ar-H), 7.843-7.732(d, 2H, Ar-H), 7.598(s, 1H, triazole), 7.367(s, 1H, triazole ring), 4.682(s, 2H, acetyl protons), 2.198(s, 3H in Ar-CH₃). Mass (LC-MS):m/z 424.03(M+), 425.3(M+1, 100%), 426.54(M+2, 100%).

Compound.4o: 5-bromo-3-(2-(4-methoxyphenyl) hydrazinylidene)-1-[1,2,4-triazol-4-yl)acetyl]-indol-2-one. 3494(-NH Str in hydrazinylidene), 3054(-CH Str in Aromatic ring), 2993, 2867, 2733(-CH str in aliphatic group), 1719(-C=O Str in Indole), 1683(-C=O Str in acetyl group), 1534(-C=N Str), 1532(-C=C Str), 1451(-C-N Str), 1409(-Br Str in Ar-Br), 1340(-CS Str). ¹HNMR (DMSO, δppm): 9.843(s, 1H, -NH proton), 8.289(s, 1H, Ar-H), 8.098-8.001(d, 2H, Ar-H), 7.854-7.805(d, 2H, Ar-H), 7.734-7.689(d, 2H, Ar-H), 7.487(s, 1H, triazole), 7.203(s, 1H, triazole ring), 4.732(s, 2H, acetyl protons), 3.684(s, 3H in Ar-OCH₃). Mass (LC-MS):m/z 438.04(M+), 439.5(M+1, 100%), 440(M+2, 100%).

2.3. Pharmacological activity

Anticancer Activity: Measurement of cell viability and proliferation forms the basis for numerous in vitro assays of a cell population's response to external factors. The MTT Cell Proliferation Assay measures the cell proliferation rate and conversely, when metabolic events lead to apoptosis or necrosis, the reduction in cell viability. The in vitro anti-cancer activity of test compounds was carried out by MTT Assay against the MCF-7 Cell lines [24]. The cell viability was once appraising by means of the MTT Assay with three impartial experiments with six different concentrations of compounds in triplicates. The novel Azole derivatives were evaluated for cytotoxicity against MCF-7 (human breast cancer cells) cell lines by MTT assay method with Doxorubicin as standard drug and results were mention in the Table.No.2.

Molecular Docking Studies. In drug design, molecular docking studies play an important role in mechanistically by placing a molecule into the binding site of the target molecule. I have docked the synthesized (3Z)-5-substituted-3-[2-(4-methoxyphenyl) hydrazinylidene]-1-[(4H-1,2,4-triazol-4-yl)acetyl]-1,3-dihydro-2H-indol-2-one.4(a-o) compounds into active site of the epidermal growth factor receptor (EGFR) was retrieved from the Protein databank website with PDB Id: 1M17 by using AUTODOCK suite of MGL Tools[25]. The confirmation with lowest binding energy was displayed as the best binding energy. Binding energy of the dataset ligands were shown in Table 1 along with the interaction amino acids and number of amino acids.

3. RESULTS AND DISCUSSION

Synthesis: The series of synthesized (3Z)-5-substituted-3-[2-(4-methoxyphenyl) hydrazinylidene]-1-[(4H- 1, 2, 4-triazol-4-yl) acetyl]-1, 3-dihydro-2H-indol-2-one-4(a-o). compound show satisfactory analysis for the proposed structures, and which were confirmed on the basis of their FT-IR, LC-MASS and ¹H NMR spectral data. In this synthetic process, a series of novel Isatin derivatives(4a-4o) were synthesized by three steps. In Step-I, substituted isatin reacts with chloroacetyl chloride in glacial acetic acid to give compounds II(a-f). It can be reacting with triazole to form compound 3(a-f) in step-II. Finally, compound 3(a-f) undergo Schiff's base reaction with substituted phenyl hydrazine in ethanol in the presence of glacial acetic acid to get title compounds Scheme-I, 4(a-o).

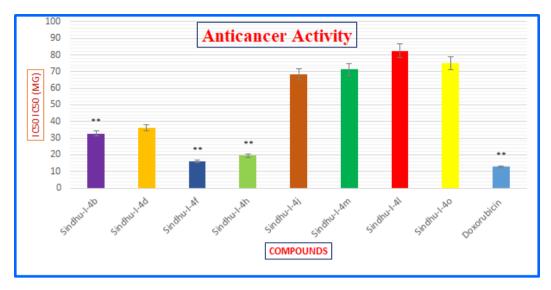
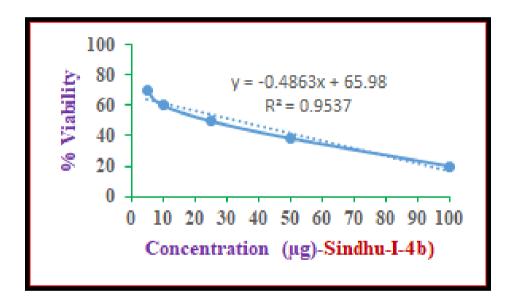
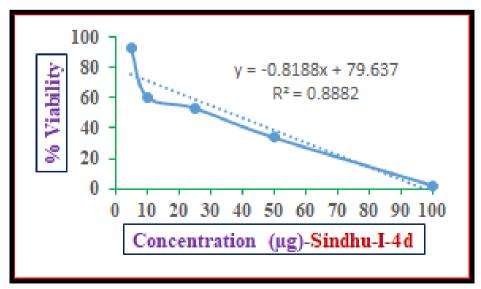
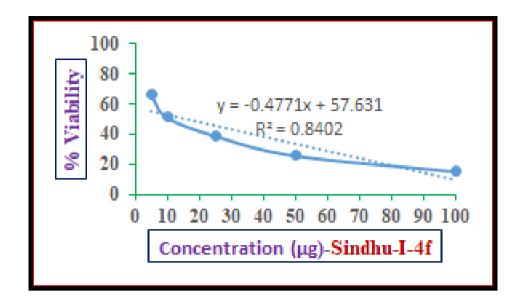
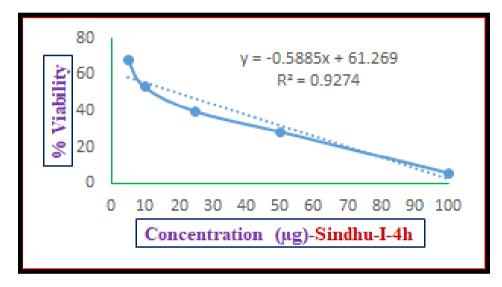
Spectral data: Spectral characterization of novel isatin derivatives was performed by IR spectroscopy. Practically, in all the compounds are showing the secondary amine –NH

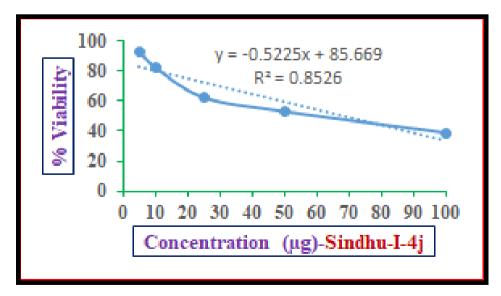
stretching frequency at around 3380 to 3450 cm⁻¹. The aromatic and aliphatic C-H stretching frequency, as expected is observed at around 3000-3120 cm⁻¹ and 2998-2723 cm⁻¹. All the compounds have been show strong absorption in the region of 1680-1743 cm⁻¹ is found to be presence of C=O stretching frequency for indole and Acetyl ketone group. All synthesized compounds are showing -C=C stretching of the aromatic ring is around 1585-1545 cm⁻¹ respectively. The halogen stretching is observed the strong absorption in the region 650-834 cm⁻¹ and some compounds containing -NO₂ group shows peaks due to stretching of -NO₂ is observed at around 1615-1648 cm⁻¹ respectively. Similarly, the ¹HNMR (DMSO-d6) spectra of novel isatin derivatives are showed a singlet at 9.500 to 9.983 δ for -NH in hydrazinyl proton and singlet at 4.023 to 4.578 δ for methylene protons. Some of the compounds are showing triplet at 3.543-3.986 δ for -OCH₃ in methoxy protons. All these compounds have aromatic protons were found between δ 8.388 to 7.234 δ ppm as singlet, doublet and triplet protons.

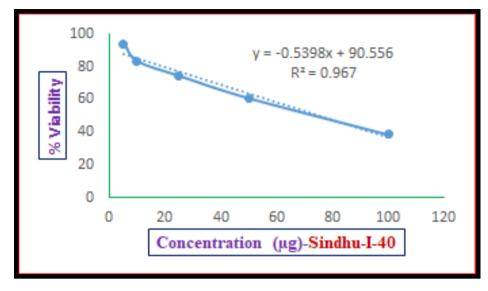
Anticancer activity: (3Z)-5-substituted-3-[2-(4-methoxyphenyl) hydrazinylidene]-1-[(4H- 1, 2, 4-triazol-4-yl) acetyl]-1, 3-dihydro-2H-indol-2-one-4(a-o) compounds were screened for cytotoxic activity against human breast cancer cells (MCF7) by using MTT assay method, with doxorubicin as a standard drug. All the results (Table 2) proposed that MCF-7 cell lines were susceptible to the evaluated compounds showed IC₅₀values in the range of 15.99 \pm 0.021 μ g to 82.56 \pm 0.512 μ g against MCF7 cell line. From the results, the compounds Sindhu-I-4f(15.99 \pm 0.021 μ g), Sindhu-I-4h(19.48 \pm 0.011 μ g) showed good activity against MCF cell lines, whereas, remaining of the compounds showed moderate activity.

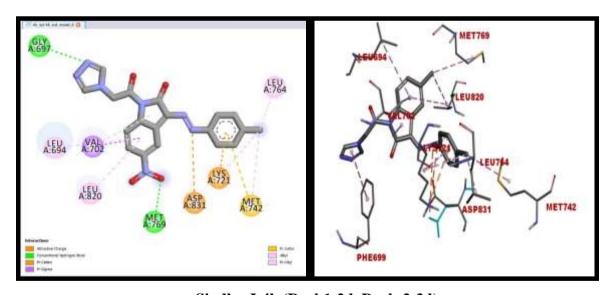
Table.2: Novel isatin derivatives treated with MCF-7 cells showing the IC₅₀ values.

S. No.	SAMPLE	$IC_{50} (\mu g)$	
5. 110.	NAME	MCF7	
1	Sindhu-I-4b	32.86±1.03	
2	Sindhu-I-4d	36.19±0.23	
3	Sindhu-I-4f	15.99±0.01**	
4	Sindhu-I-4h	19.48±0.001**	
5	Sindhu-I-4j	68.26±2.03	
6	Sindhu-I-4m	71.37±2.15	
7	Sindhu-I-41	82.56±1.08	
8	Sindhu-I-4o	75.13±3.21	
9	Doxorubicin	12.83±0.01**	

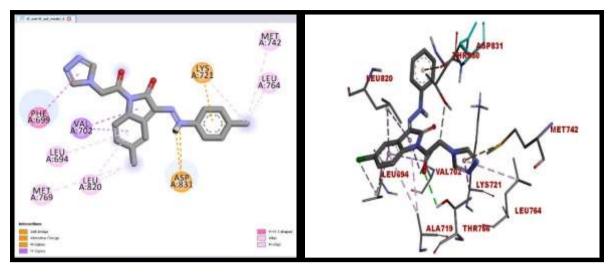







Figure 3: Graphical representation of anticancer activity of Novel isatin derivatives(Sindhu-I-4(a-o) againstMCF-7 cell line.



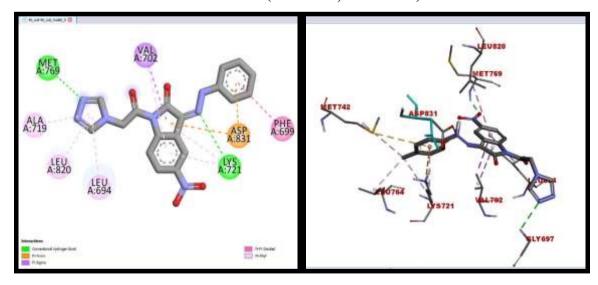

Figure 4: Graphical representation of anticancer activity of Novel isatin derivatives (Sindhu-I-4(a-o)- IC₅₀ values.

Molecular Docking studies: All the docked ligands, reported lowest binding energy between **-11.7 to -8.4 Kcal/mol.** Most of the compounds possess one hydrogen bond each with VAL:702, MET:742, LEU:694, MET:769 amino acids. Compounds **Sindhu-I-(4b & 4h)** possess two hydrogen bond interaction. Sindhu-I-(4c,4d,4g, 4i, 4j,4k, 4m, 4o) had one hydrogen bond interaction. Compounds Sindhu-I-(4a,4e, 4f,4n and 4l) no hydrogen bond interaction.


Table No. 5: Insilco EGFR inhibition of novel Isatin derivatives Sindhu-I-(4a-4o)-Binding Energy.

Compound No	Binding Energy (Kcal/mol)	No of H- bonds	Interacting amino acids	H-bond lengths (Å)
4h	-11.7	2	GLY:697, PHE:699, VAL:702, MET:742, LEU:694, MET:769, ALA:719, LEU:820, ASP:831, LYS:721	2.53, 2.81
4f	-11.4	Nil	PHE:699, VAL:702, MET:742, LEU:694, MET:769, ALA:719, LEU:820, ASP:831, LYS:721, LEU:764, LYS:851	Nil
4b	-11.2	2	PHE:699, LEU:694, VAL:702, ALA:719, LYS:721, MET:769, LEU:820, ASP:831	2.61, 2.72
4a	-11.1	Nil	ALA:719, LYS:721, MET:742, LEU:764, CYS:773, LEU:820, THR:830, ASP:831	Nil

4i	-11.0	1	LEU:764, LEU:764, CYS:773,	2.32	
			LEU:820	_,	
			THR:766, LEU:694, VAL:702,		
4n	-10.9	Nil	ALA:719, LYS:721, MET:742,	Nil	
			LEU:764, CYS:773,		
			LYS:721, MET:742, LEU:764,		
4d	-10.8	1	CYS:773, LEU:820, THR:830,	2.62	
			ASP:831		
4 -	10.5	1	MET:769, ALA:719, LEU:820,	1.00	
4c	-10.5	1	ASP:831, LYS:721	1.98	
			MET:742, LEU:694, MET:769,		
4 j	-10.4	1	ALA:719, LEU:820, LYS:721,	2.02	
ŭ			LEU:764, LYS:851		
41	10.0	4	ALA:719, LEU:820, ASP:831,	1.07	
4k	-10.2	1	LYS:721, LEU:764, LYS:851	1.87	
	0.7	NT'1	PHE:699, VAL:702, MET:742,	NI:1	
4e	-9.7	Nil	LEU:694, MET:769, ALA:719,	Nil	
			VAL:702, MET:742, LEU:694,		
40	-9.5	1	MET:769, ALA:719, LEU:820,	2.18	
			ASP:831, LYS:721, LEU:764,		
4	0.0	1	LEU:694, VAL:702, ALA:719,	2.01	
4 g	-8.9	1	LYS:721, MET:769, LEU:820	2.01	
41	-8.6	Nil	9, VAL:702, MET:742, MET:769,	Nil	
			ALA:719, LEU:820,		
4	0.4	1	VAL:702, MET:742, LEU:694,	1.00	
4m	-8.4	1	MET:769, LEU:820, LYS:721	1.98	


Sindhu-I-4b (Dock1-2d, Dock-2-3d)

Sindhu-I-4d (Dock1-2d, Dock-2-3d)

Sindhu-I-4f (Dock1-2d, Dock-2-3d)

Sindhu-I-4h (Dock1-2d, Dock-2-3d)

Figure 5: Docking Pose between the Ligand and the Protein (Sindhu-I-(4b, 4d, 4f and 4h)-dock-1 2d and dock-2 3d pictures.

www.wjpr.net | Vol 13, Issue 13, 2024. | ISO 9001:2015 Certified Journal | 919

5. CONCLUSIONS

The novel 5-substituted-3-[2-(4-methoxyphenyl) hydrazinylidene]-1-[1, 2, 4-triazol-4-yl) acetyl]-indol-2-one-4(a-o) compounds are developed by a three step process under conventional method. The yield of the synthesized compound was found to be in the range from **75-87%.** All novel isatin derivatives (Scheme-I, Sindhu-I-4(a-o)) were elucidated by IR, ¹H-NMR, Mass spectroscopy along with physical data. All the synthesized compounds screened for the anticancer activity against MCF-7 ell lines and Molecular docking studies were carried out by AUTODOCK VINA. Most of the compounds are showing good IC₅₀ vales were compared with standard.

AKNOWLEDGEMENTS

One of the authors Dr. D. Ashok gratefully acknowledges the UGC, New Delhi for the award of BSR Faculty Fellowship [No. F. 18-1/2011(BSR)/2018].

CONFLICT OF INTEREST: The authors declare that they have no conflict of interest. The authors alone are responsible for the content and writing of the paper.

REFERENSES

- 1. WFG, MacNeil S, Dawson RA, Tomlinson S, Bleehen SS: An investigation of the ability of antipsoriatic drugs to inhibit calmodulin activity: a possible mode of action of dithranol (anthralin). J Invest Dermatol, 2016; 87: 232-235.
- Johns BA, Weatherhead JG, Allen SH, Thompson JB, Garvey EP, Foster SA. The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors Part 1: Establishing the pharmacophore. Bioorg. Med Chem Lett, 2009; 19(6): 1802–6. Kainz K, Bauer MA, Madeo F, Carmona GD. Fungal infections in humans: the silent crisis. Microb Cell, 2020; 7(6):143–5.
- Golmohhamadi, F.; Balalaie, S.; Hamdan, F.; Maghari, S. Efficient Synthesis of Novel Conjugated 1,3,4-Oxadiazole-Peptides. New J. Chem., 2018; 42: 4344-4351. https://doi.org/10.1039/C7NJ04720G
- Baijika P., Akash M., Midhula C., Shadiha S. Synthesis and Biological Activities of 1, 3,
 4-Oxadiazole Derivatives: A Review of Literature. Int. J. Adv. Res., 2018; 6: 1114-1122.
 https://doi.org/10.21474/IJAR01/6328
- 5. Suman, B.; Sunil, K.; Anu, K.; Saini, V.; Prasad, D.N. 1,3,4-Oxadiazole Derivatives: Synthesis, Characterization, Antimicrobial Potential, and Computational Studies. BioMed. Res. Int., 2014; 2014.

- Article ID 172791. https://doi.org/10.1155/2014/172791
- Salahuddin; Mazumder, A.; Shahar Yar, M.; Mazumder, R.; Chakraborthy, G.S.; Ahsan, M.J.; Rahman, M.U. Updates on Synthesis and Biological Activities of 1,3,4-Oxadiazole: A Review. Synth.Commun, 2017; 47: 1805-1847. https://doi.org/10.1080/00397911.2017.1360911
- 7. Vita LD, Scipione S, Tortorella S, Mellini P, Di Rienzo B, Simonetti G, D'Auria FD, Panella S, Cirilli R, Di Santo R, Palamara AT. Synthesis and antifungal activity of a new series of 2-(1H-imidazol-1-yl)- 1-phenylethanol derivatives. Eur J Med Chem., 2012; 49: 334–42.
- 8. Damiche R, Chafaa S. Synthesis of new bioactive aminophosphonates and study of their antioxidant, anti-inflammatory and antibacterial activities as well the assessment of their toxicological activity. J Mol Struct, 2017; 1130: 1009–1017.
- 9. Repasky, M.; Murphy, R.; Banks, J.; Greenwood, J.; Tubert Brohman, I.; Bhat, S.; Friesner, R. Docking performance of the glide program as evaluated on the Astex and DUD datasets: a complete set of glide SP results and selected results for a new scoring function integrating Water Map and glide. J. Comput. Aided Mol. Des., 2012; 26(6): 787-799.
- 10. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep., 2017; 7: 42717.
- 11. Behrouz S, Rad MN, Shahraki BT, Fathalipour M, Behrouz M, Mirkhani H. Design, synthesis, and in silico studies of novel eugenyloxy propanol azole derivatives having potent antinociceptive activity and evaluation of their β-adrenoceptor blocking property. Molec Diversity, 2019; 23: 147–164.
- 12. Bandgar, B.P.; Adsul, L.K.; Chavan, H.V.; Jalde, S.S.; Shringare, S.N.; Shaikh, R.; Meshram, R.J.; Gacche, R.N.; Masand, V. Synthesis, biological evaluation, and docking studies of 3- (substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents Bioorg. Med. Chem. Lett., 2012; 22: 5839–5844.
- 13. Biamonte, M.A.; Wanner, J.; Roch, K.G.L. Recent advances in malaria drug discovery. Bioorg. Med. Chem. Lett., 2013; 23: 2829–2843.
- 14. Bouaziz, Z.; Issa, S.; Gentili, J.; Gratz, A.; Bollacke, A.; Kassack, M.; Jose, J.; Herfindal, L.; Gausdal, G.; Døskeland, S.O. Biologically active carbazole derivatives: Focus on oxazinocarbazoles and related compounds. J. Enzyme Inhibition Medicinal Chemistry, 2015; 30: 180–88.

- 15. Yıldırım, I.; Aktaş, A.; Celepci D.B.; Kırbağ, S.; Kutlu, T.; Gök, Y.; Aygün, M. Synthesis, Characterization, Crystal Structure, and Antimicrobial Studies of 2-Morpholinoethyl-Substituted Benzimidazolium Salts and Their Silver(I)-N-Heterocyclic Carbene Complexes. Res. Chem. Intermediat, 2017; 43: 6379-6393. https://doi.org/10.1007/s11164-017-2995-3
- 16. Murugavel, S.; Sundramoorthy, S.; Subashini, R.; Pavan, P. Synthesis, Characterization, Pharmacological, Molecular Modeling and Antimicrobial Activity Evaluation of Novel Isomer Quinoline Derivatives. Struct. Chem., 2018; 29: 1677-1695. https://doi.org/10.1007/s11224-018-1149-6
- 17. Kavitha, S.; Kannan, K.; Ghanavel, S. Synthesis, Characterization and Biological Evaluation of Novel 2,5substituted-1,3,4 Oxadiazole Derivatives. Saudi Pharm. J., 2017; 25: 337-345. https://doi.org/10.1016/j.jsps.2016.07.004.
- 18. Farooqi S.I., Arshad N., Channar P.A., Perveen F., Saeed A., Larik F.A., Javeed A. Synthesis, theoretical, spectroscopic and electrochemical DNA binding investigations of 1,3,4-thiadiazole derivatives of ibuprofen and ciprofloxacin: Cancer cell line studies. *J.Photochem.Photobiol*, 2018; 189: 104–118.
- 19. Rizk H., El-Borai M.A., Ragab A., Ibrahim S.A. Design, synthesis, biological evaluation and molecular docking study based on novel fused pyrazolothiazole scaffold. *J. Iran. Chem. Soc.*, 2020; 17: 2493–2505. doi: 10.1007/s13738-020-01944-9.
- 20. Rashid M., Husain A., Mishra R., Karim S., Khan S., Ahmad M., Khan S.A. Design and synthesis of benzimidazoles containing substituted oxadiazole, thiadiazole and triazolothiadiazines as a source of new anticancer agents. *Arab. J. Chem.*, 2015; 12: 3202–3224. doi: 10.1016/j.arabjc.2015.08.019.
- 21. Bondock S., Khalifa W., Fadda A.A. Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3,4-dihydronaphthalene-2-carboxaldehyde. *Eur. J. Med. Chem.*, 2007; 42: 948–954. doi: 10.1016/j.ejmech.2006.12.025.
- 22. D. Ashok. N.H. Kumar Baba, Boddu Ananda Rao, Sarasija Madderla and N.Y.S. Murthy. Microwave-assisted synthesis and biological evaluation of thiazole-substituted dibenzofurans. Heterocycl. Commun, 2019; 24(3): 171–176.
- 23. Boughabaa S, Bouacidab S, Aoufa Z, Bechiric O, Aouf NE. H₆P₂W₁₈O₆₂.14H₂O Catalyzed synthesis, spectral characterization and X-ray study of α-aminophosphonates containing aminothiazole moiety. Cur Org Chem., 2018; 22: 1–7.

- 24. Khan, S.; Imam; M.; Ahmad, A.; Basha, S.H.; Husain, A. Synthesis, Molecular Docking with COX 1& II Enzyme, ADMET Screening and In Vivo Anti-Inflammatory Activity of Oxadiazole, Thiadiazole and Triazole Analogs of Felbinac. J. Saudi Chem. Soc., 2018; 22: 469-484. https://doi.org/10.1016/j.jscs.2017.05.006
- 25. MacNeil S, Griffin M, Cooke AM, Pettett NJ, Dawson RA, Owen R, Blackburn GM: Calmodulin antagonists of improved potency and specificity for use in the study of calmodulin biochemistry. Biochem Pharmacon, 2018; 37: 1717-1723.