WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Volume 12, Issue 1, 416-425.

Review Article

ISSN 2277-7105

SOME TRADITIONAL PHYTOMEDICINES WITH ANTIDIABETIC **PROPERTY**

Md. Waasiullah¹, Piyush Yadav²*, Yogesh Kumar Pandey³ and Vinit Kumar Singh⁴

¹Principal, Dept. of Pharmacy, Prasad Institute of Technology, Jaunpur 222001 (U.P) India. ²Principal, Dept. of Pharmacy, Prasad Polytechnic Jaunpur 222001(U.P) India.

³Dept. of Pharmacy, Prasad Institute of Technology, Jaunpur 222001 (U.P) India.

⁴Principal, Dept. of Pharmacy, Jyoti College of Management Science and Technology, Bareilly, 243001 (U.P) India.

Article Received on 13 Nov. 2022,

Revised on 03 Dec. 2022, Accepted on 23 Dec. 2022

DOI: 10.20959/wjpr20231-26666

*Corresponding Author Piyush Yadav

Principal, Dept. of Pharmacy, Prasad Polytechnic, Jaunpur (222001) U.P, India.

ABSTRACT

It is the very fact that polygenic disorder can't be cured and it's ne'er been reportable that somebody had recovered totally from polygenic disorder. The apace increasing incidence of DM is changing into a heavy threat to mankind health all told components of the globe. Moreover, throughout the past few years a number of the new bioactive medication isolated from plants showed medicament activity with additional effectualness than oral hypoglycemic agents utilized in clinical medical aid. the standard drugs performed a decent clinical apply and is showing a bright future within the cure of DM. this paper reviews usual medicines with their mechanism of action and their medical specialty take a look at results. several studies have confirmed

the advantages of healthful plants with hypoglycemic effects within the management of DM. the results of those plants could delay the event of diabetic complications and proper the metabolic abnormalities. UN agency has realized this bar of polygenic disorder and its complications isn't solely a serious challenge for the long run, however essential if health for all is to realize. Therefore, in recent years, wide attention has been directed towards identification of plants with medicament ability which will be used for human consumption. Further, it emphasizes powerfully during this regard the facultative and rational uses of ancient and natural native medicines.

KEYWORDS: Diabetes mellitus, Medicinal plant and WHO.

Diabetes mellitus may be a cluster of metabolic disorders with one common manifestation hyperglycemia. [1,2] Chronic hyperglycemia cause sdamageeyes, kidneys, nerves, heart and blood vessels. [3] it's caused by transmitted and/or no inheritable deficiency in production of hormone by the duct gland, or by the impotency of the hormone made. It results either from inadequate secretion of endocrine insulin, associate inadequate response of target cells to insulin, or a mix of those factors. This sickness needs diagnosing, treatment and changes in life vogue. it's projected to become one among the world is main disablers and killers inside the next twenty five years. The management of polygenic disorder may be a global downside till now and thriving treatment is not nonetheless discovered. There are many manmade medicines developed for patients, however it's the very fact that it has ne'er been reportable that somebody had recovered totally from polygenic disorder. [4] the trendy oral symptom agents turn out undesirable and facet effects. Thus, various medical care is needed, a need of hour is to shift towards the various endemic plant and favorer formulations. [5] The normal medicines incontestable a bright future in medical care of diabetes and to grasp the importance of ancient herbs, the plan of the review is to gather the available information on plants with medication activity reported within the pharmaceutical journals.

Natural medicines used for diabetes therapy

Recently, some meditative plants are reported to be helpful in polygenic disease worldwide and have been used through empirical observation as medicinal drug and anti hyperlipidemic remedies. Despite the presence of best-known ant diabetic medication within the pharmaceutical market, diabetes and also the connected complications continued to be a serious medical downside. Ant hyperglycemic effects of those plants square measure attributed to their ability to restore the perform of duct gland tissues by inflicting an increase in hypoglycemic agent output or inhibit the internal absorption of aldohexose or to the facilitation of metabolites in hypoglycemic agent dependent processes. More than four hundred plant species having hypoglycemic activity are offered in literature, however, sorting out new medicinal drug medicine from natural plants is still engaging as a result of they contain substance which demonstrate alternative and safe effects on diabetes mellitus. Most of undergrowth contain glycosides, alkaloids, terpenoid, flavonoids, scorticoids, etc., that are commonly implicated as having antidiabetic effect. variety will be described in alphabetical order and in order about each species will include in sequence: general botanical and taxonomic data, distribution in the world, investigational study and mechanism of action. Which make obvious substitute and safe effects on diabetes mellitus. Most of plants contain

glycosides, alkaloids, terpenoids, flavonoids, corticoids, etc., that are frequently implicated as having antidiabetic effect. Species will be describe in alphabetical order and information about each species will include in sequence: general botanical and taxonomic data, sharing in the world, experimental study and mechanism of action.

Anacardium occidentale Linn. (Anacardiaceae)

Herb originated from Brazil, it's used as folks medication in African countries, primarily in Cameroon, for the treatment of DM. hypoglycemic and protecting role of A. occidentale was rumored.^[6,7] The ant hyperglycemic and nephritic protecting activities of leaves of this herb were rumored in streptozotocin elicited diabetic rats. It reduces diabetes-induced purposeful and histological alterations in the kidneys. it absolutely was shown that histopathological study of A. occidental considerably reduced buildup of mucopolysaccharides within the kidneys of diabetic animal.^[8]

Annona squamosa Linn. (Annonaceae)

Ordinarily referred to as dish apple in English and sharifa in Hindi. it's cultivated throughout Republic of India. The pharmacologic active ingredients square measure gift in seeds, leaves and aerial components of the plant.^[9] The analysis reveals that the plant possesses each symptom and medicament activity. It acts by striking endocrine level from the duct gland islets, will increase deployment of aldohexose in muscle and inhibits the aldohexose output from liver. Its margin of safety is high. The extract obtained from leaves of this plant is helpful in maintaining healthy glucose and cholesterin levels.^[10]

Boerhaavia diffusa Linn. (Nyctaginaceae)

Circulated wide everywhere in Asian nation, could be a tiny perennial creeping herb, usually referred to as red hogweed. the foundation and therefore the whole plant area unit used as associate Ayurveda drugs in Asian nation and Unani drugs for the treatment of polygenic disorder, stress, dyspepsia, abdominal pain, swelling, jaundice, enlargement of spleen, symptom heart disease and microorganism infections. [11-12] binary compound leaf extract of the plant has been studied for its medicine impact in alloxan-induced diabetic rats. [13-14] The medicine activity of the chloroform extract of the plant leaves on chronic cure of streptozotocininduced {niddm|type II polygenic disorder|non-insulin-dependent diabetes mellitus|NIDDM|non-insulin-dependent diabetes|ketosis-challenging diabetes mellitus|ketosis-resistant diabetes|ketoacidosis-resistant diabetes|adult-onset diabete} (non hypoglycemic agent dependent diabetes mellitus)

model diabetic rats was evaluated and therefore the herb possesses medicine activity. The herb in the main acts by reducing glucose level and increasing hypoglycemic agent sensitivity.^[15]

Bougainvillea spectabilis Linn. (Nyctaginaceae)

Is a terribly acquainted decorative plant unremarkably grown in Indian gardens, vine may be a genus of flowering plants native to South America from Brazil west to South American country and south to southern Argentina, the standard plant has the medicine potential. The glucose lowering potential of Bougainvillea spectabilis Willd leaf extract in streptozotocin-induced kind I diabetic anomaly rats was reportable. The ethanolic extract of the leaves has antihyperglycemic activity in all probability thanks to increased uptake of aldohexose by increased glycogenesis within the liver and conjointly thanks to increase in hormone sensitivity. [16]

Bridelia ndellensis Beille. (Euphorbiaceae)

A medicinal plant employed in Cameroon against polygenic disorder. The water and fuel extract of leaf of allied species B. ferruginea has been established as a vigorous hypoglycemic agent in alloxan evoked diabetic rats.^[17] The study of the aldohexose lowering of the ethanol extract and fractions of B. ndellensis stem bark in STZ (streptozotocin) sort I and II polygenic disorder rats at totally different aliment states was performed and significant lowering in glucose level was experimental. The extract act by stimulation of islets cells and needs purposeful purposeful for its action.^[18]

Casearia esculenta Roxb. (Flacourtiaceae)

Is a plant with medicative properties referred to as wild cowrie fruit in English. The plant is within the type of shrub distributed in South Asian nation. C. esculenta has been a remedy that is in style for DM. [19-20] it's been reported that plant contains hypoglycemic impact. [21] C. esculenta root extract contain symptom factors, that bargain blood sugar level in experimental animals. C. esculent a root extract has influence on macromolecule metabolism and marker enzymes in streptozotocin-induced diabetic rats. The study unconcealed that C. esculent a root extract has the ant hyperglycemic impact and it should elevate liver and excretory organ harm related to streptozotocin-induced polygenic disorder in rats. [22]

Cassia kleinii Wight & Arn.

(Caesalpiniaceous), is the medical remedy for the folks diabetic practitioners in South Asian country. The normal systems like Ayurveda and Siddha systems donít use this plant. The alcoholic extracts of leaves appear to indicate promising results for the event of phytomedicines by exhibiting the antihyperglycemic activity on aldohexose feed hyperglycemic and alloxan-induced diabetic rats. The leaf extract of Cassia kleinii might not act by synergy of hypoglycemic agent however it may be utilized in insulin freelance polygenic disease as a result of drug exhibited antihyperglycemic result however not symptom effect in fasted rats. The action of drug is also mimicking some or all of the action of hypoglycemic agent on the metabolism of aldohexose.^[23]

Coccinia indica Wight & Arn. (Cucurbitaceae)

Widely utilized in ancient treatment of diabetes in geographical region and geographical region. Pectin isolated from the fruits of C. indicia has hypoglycaemic activity.^[24] Alcoholic extract of plant was set up to move in reducing glucose level, then this extract was subjected to more fractionation to gauge its organic chemistry parameters implementation polygenic disease and results prompt dissolving agent as an active fraction, the precise action of those principles is also because of because of restorative properties against alloxan evoked injury.^[25]

Cocculus hirsutus Linn. (Menispermaceae)

Roots are bitter, acrid, laxative, demulcent and antiperiodic in fever, tonic and drug, conjointly called patalagarudi. The plant grows everywhere Bharat, particularly in dry regions. it's a untidy ligneous plant, with sympathetically villous young elements and resembles the plant path. Badole et al. have incontestible the antihyperglycemic activity of liquid extract of leaves of Cocculus hirsutus (L) Diels in alloxan-induced diabetic mice. The antihyperglycemic potential of aqueous extract of C. hirsutus is also because of lowering of humor aldohexose level in diabetic mice and increased aldohexose tolerance. in addition, the extract prevents loss of weight. [26]

Coscinium fenestratum Colebr. (Menispermaceae)

Usually called tree in Western Ghats (India) and country. The plant has been principally used for diabetes within the ancient, Ayurvedic and Siddha systems of medication. Alcoholic stem extract of this plant regulates metabolism and improves inhibitor standing in streptozotocin, nicotinamide-induced diabetic rats. The alcoholic extract

regulates aldohexose physiological state and decreased gluconeogenesis by C. fenestratum. The drug conjointly has protecting action on cellular inhibitor defense.^[27]

Ficus hispida Linn. (Moraceae)

Additionally referred to as Daduri for the treatment of polygenic disease. This tiny tree may be found throughout Republic of India. Completely different employees have reported for the symptom effects of various compounds obtained from F.bengalensis. The symptom activity of F. bengalensis Linn. (bark) in traditional and diabetic anomaly rats complete that the soluble fraction of the alcoholic extract of Ficus hispida considerably decreases fast blood sugar levels in conventional and alloxan-induced diabetic rats. The extract has direct peripheral action on β cells however drug interaction will occur between Ficus hispida bark extract and endocrine if given along. [30]

Hypoxis hemerocallidea Fisch. Mey. (Hypoxidaceae)

It's stem perennial plant that was antecedently referred to as H. rooperi. It's known surpriseplant in Republic of South Africa associate degreed has been reported to be an effective remedy for the adult onset diabetes. The methanolic extract of H. hemerocallidea was reported for its symptom impact in normoglycemic and in streptozotocin-induced diabetic rats; the herb will be used as symptom agent and its property to cure the adult onset diabetes. The action of the flavorer plant material isn't nevertheless plain.

Murraya koenigii Linn. (Rutaceae)

Is often known as Curry patta and is wide used flavouring and spice in Republic of India. In traditional and alloxan polygenic disease the liquid extract of the leaves of M. koenigii created symptom impact. Oral feeding of this plant for sixty days diet to traditional rats showed associate degree increase within the concentration of internal organ polyose due to symptom activity. It's been reported that feeding completely different doses of M. koenigii leaves to diabetic rats play a task up to the mark of gentle diabetic rats to moderate, severe and kind I polygenic disease. It suppresses blood sugar level and was found to own helpful impact on saccharide metabolism.

Syzyguim cumini Linn. (Formerly magnoliopsid genus jambolana, Myrtaceae)

With acknowledged antihyperglycemic effects. several components of the plant, like fruit, seeds, bark and tea ready from the leaves, have been employed in treatment of polygenic disorder throughout Asian countries.^[37-38] Antihyperglycemic impact has been rumored in

leaves, [39] seeds [40] fruits, [41] and bark, [42] however researchers didn't establish any blood glucose lowering impact with extracts or tea prepared from leaves of plant in traditional rats and in rats with STZ-induced DM, and in traditional volunteers. Tea ready from leaves of S. cumini has no hypoglycaemic impact however, as its mechanism of action may rely on specific abnormalities with the illness, the impact in polygenic disorder remains possible. [43]

Terminalia chebula Retz. (Combretaceae)

Has been wide employed in polygenic disorder in writing and is widely distributed in Republic of India. Associate degree flavoring formulation containing T. chebula named TRIPHALA is ancient medication for the treatment of polygenic disorder. Antidiabetic and renoprotective effects of the chloroform extract of T. chebula Retz seeds in streptozotocin-induced diabetic rats was proved. It's potent renoprotective action.^[44]

Terminalia catappa Linn. (Combretaceae)

Is found throughout the hotter components of Republic of India and called associate degree Indian almond. The medicine potential of fossil oil ether, wood spirit and binary compound extract of T. catappa fruits on abstinence glucose levels and serum organic chemistry analysis in alloxan-induced diabetic rats was performed. All the 3 extracts created a big medicine activity at dose levels of 1/5 of their deadly doses. The extract might act by β -cells regeneration. The impact could also be because of because of reducing diabetic complications like glycosylation in alloxaninduced diabetic rats.^[45]

CONCLUSION

Diabetes mellitus may be a syndrome, at first characterised by loss of aldohexose physiological state ensuing from defects in internal secretion secretion, internal secretion action each resulting in impaired metabolism of aldohexose and other energy-yielding fuels like lipids and proteins. [46] Currently, several countries face massive increases within the range of individuals stricken by diabetes. The planet Health Organization calculable that concerning thirty million folks suffered from polygenic disease in 1985 and therefore the range redoubled to quite 171 million in 2000. It's calculable that the amount can increase to over 366 million by 2030 which massive increases can occur in developing countries, particularly in folks aged between forty five and sixty four years. [47] Experimental polygenic disease in animals has provided considerable insight into the physiological and organic chemistry derangement of the diabetic state. Many of these derangements are characterized in hyperglycemic animals. important changes in structure and lipid metabolism occur in

polygenic disease. In these cases the structural changes area unit clearly aerophilous in nature and area unit related to development of vascular illness in polygenic disease. In polygenic disease, redoubled lipid per oxidation is additionally related to lipemia. The liver, associate hypoglycemic agent dependent tissue that plays a vital role in aldohexose and lipide physiological state, is severely affected throughout polygenic disease. The liver and urinary organ participate within the uptake, reaction and metabolic conversion of free fatty acids, synthesis of cholesterin, phospholipids and triglycerides. throughout polygenic disease, a profound alteration within the concentration and composition of lipids happens. Despite the good strides that have been created within the understanding and management of polygenic disease, the illness and illness connected complications area unit increasing intense. [48] In spite of the presence of far-famed medicine drugs within the pharmaceutical market, remedies from healthful plants area unit used successfully to treat this illness. Many ancient plant treatments for polygenic disease area unit used throughout the planet. Plant medicine and flavoring formulations area unit often thought-about to be less lethal and free from facet effects than artificial ones. Based on the World Health Organization recommendations, symptom agents of plant origin utilized in ancient medicine area unit necessary. The attributed ant hyperglycemic effects of those plants area unit thanks to their ability to revive the perform of exocrine gland tissues by causing a rise in hypoglycemic agent output or a decrease in the internal organ absorption of aldohexose. Hence, cure with flavouring medicine has a sway on protective protective and smoothing out fluctuation in aldohexose levels. In general, there's little or no biological information on the specific modes of action within the treatment of polygenic disease, however most of the plants are found to contain substances like glycosides, alkaloids, terpenoids, flavonoids etc. that area unit often concerned as having medicine effects. The analysis for alternate remedies (from the plant kingdom) for diabetes can continue everywhere the planet because the illness poses several challenges not solely to the medical practitioner however also to the research worker.

REFERENCE

- 1. WHO Expert committee on diabetes mellitus: second report, World Health Organ. Tech. Rep. Ser, 1980; 646: 1-80.
- 2. Diabetes Mellitus: Report of a WHO Study Group, World Health Organ. Tech. Rep. Ser, 1985; 727: 1-113.
- 3. Mayfield J.: Am. Fam. Physician, 1998; 58: 1355.
- 4. Li W.L., Zheng H.C., Bukuru J., et al.: J. Ethnopharmacol, 2004; 92: 1.

- 5. Satyanarayana T., Katyayani B.M., Latha H.E., et al.: Phcog. Mag, 2006; 2: 244.
- 6. Kamtchouing P., Sokeng D.S., Moundipa P.F., et al.: J. Ethnopharmacol, 1998; 62: 95.
- 7. Sokeng S.D., Kamtchouing P., Watcho P., et al.: Diabetes Res, 2001; 36: 1.
- 8. Teonard L., Dimo T., Paul D., et al.: Afr. J. Tradit. Complement. Altern. Med, 2006; 3: 23.
- 9. Watt G.: Periodical Experts: A Dictionary of the Economical Products of India, Cosmo Publications, Delhi, 1972; 260.
- 10. Gupta R.K., Kesari A.N., Watal G., et al.: Curr. Sci, 2005; 88: 1244.
- 11. Nadkarni K.M.: Indian Materia Medica, Popular Book Depot, Mumbai, 1954; 3: 202–207.
- 12. Chopra R.W., Chopra I.C., Handa K.L., et al.: Indigenous Drugs of India, Dhar and Sons Ltd., Calcutta, 1958; 2: 314 – 316.
- 13. Chude M.A., Orisakwe O.J., Afonne O.J., et al.: Ind. J. Pharmacol, 2001; 33: 215.
- 14. Pari L., Satheesh M.A.: J. Ethnopharmacol, 2004; 91: 109.
- 15. Rao K.N., Krishna M.B., Srinivas N.: Trop. J. Pharm. Res, 2004; 3: 305.
- 16. Purohit A., Sharma A.: Ind. Drugs, 2006; 43: 538.
- 17. Addae M.I., Achenbach H.: Phytochemistry, 1985; 24: 1817.
- 18. Sokeng S.D., Rokeya B., Mostafa M., et al.: Afr. J. Tradit. Complement. Altern. Med, 2005; 2: 94.
- 19. Asolkar L.V., Kakkar K.K., Chatre O.J.: Glossary of Indian medicinal plants with active principles (Part I) A-K series, Publication and Information Directorate, CSIR, New Delhi, 1992; 176.
- 20. Yoganarasimhan S.N.: Medical plants of India, Tamilnadu, International Book Publishers., Print Cyber Media., Bangalore, 2000; 2: 109 – 110.
- 21. Gupta S.S., Verma S.C., Garg V.P., et al.: Indian J. Med. Res, 1967; 55: 754.
- 22. Prakasam A., Sethupathy S., Pugalend K.V.: Pol. J. Pharmacol, 2004; 56: 587.
- 23. Babu V., Gangadevi T., Subramoniam A.: Indian J. Pharmacol, 2002; 34: 409.
- 24. Prasannakumar G., Sudeesh S., Vijayalakshmi N.R., et al.: Planta Med, 1993; 59: 330.
- 25. Dhanabal S.P., Koata C.K., Ramnathan M., et al.: Indian J. Pharmacol, 2004; 36: 244.
- 26. Badole S., Patel N., Badhankar S., et al.: Indian J. Pharmacol, 2006; 38: 49.
- 27. Punitha I.S.R., Rajendran K., Shirwaikar A., et al.: Alternat. Med, 2005; 2: 375.
- 28. Bramachan H.D., Augusti K.T., et al.: Indian J. Physiol. Pharmacol, 1964; 3: 60.
- 29. Cherian S., Augusti K.T.: Indian J. Exp. Biol, 1993; 31: 26.
- 30. Ghosh R., Sharachandra K.H., Rita S., et al.: Indian J. Pharmacol, 2004; 36: 222.

- 31. Van Wyk B.E., Van O., Gericke N.: Medical plants of South Africa, Briza Publications, Pretoria, 1997; 1: 156.
- 32. Bahle S., John A.O.: Med. J. Islam. Acad. Sci, 2000; 13: 75.
- 33. Narayan N.S., Sastry K.N.V.: Mysore J. Agric. Sci, 1975; 9: 132.
- 34. Khan B.A., Abraham A., Leelamma S.: Ind. J. Biochem. Biophys, 1995; 32: 106.
- 35. Yadav S., Vats V., Dhunnoo Y., et al.: J. Ethnopharmacol, 2002; 82: 111.
- 36. Kesari A.N., Gupta R.K., Watal G.: J. Ethnopharmacol, 2005; 97: 247.
- 37. Bramachari H.D., Augusti K.T.: J. Pharm. Pharmacol, 1961; 13: 381.
- 38. Rahman A.U., Zaman K.: J. Ethnopharmacol, 1989; 26: 1.
- 39. Sigogneau M., Bilbal P., Chanez M., et al.: C. R. Acad. Sci. D Sci. Nat, 1967; 264: 1119.
- 40. Shrotri D.S., Kelkar M., Deshmukh V.K., et al.: Indian J. Med. Res, 1963; 51: 464.
- 41. Achrekar S., Kaklij G.S., Pote M.S., et al.: In vivo, 1991; 5: 143.
- 42. Ratsimamanga A.R.: C. R. Acad. Sci. D Sci. Nat, 1973; 277: 2219.
- 43. Teixeira C.C., Fuchs F.D., Weinert L.S., et al.: J. Clin. Pharm. Ther, 2006; 31: 1.
- 44. Rao N.K., Nammi S.: BMC Complement. Altern. Med, 2006; 6: 17. http://www.biomedcentral.com/1472-6882/6/17.
- 45. Nagappa A.N., Thakurdesai P.A., Venkat Rao N., Singh J.: J. Ethnopharmacol 2003; 88: 45.
- 46. Sivajothia V., Dey A., Jayakar B., et al.: Iran. J. Pharm. Res, 2008; 7: 53.
- 47. Wild S., Roglic G., Green A., et al.: Diabetes Care, 2004; 27: 1047.
- 48. Tiwari A.K., Madhusudana R. J., et al.: Curr. Sci, 2002; 83: 30.